Variance bounding Markov chains

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Variance Bounding Markov Chains

We introduce a new property of Markov chains, called variance bounding. We prove that, for reversible chains at least, variance bounding is weaker than, but closely related to, geometric ergodicity. Furthermore, variance bounding is equivalent to the existence of usual central limit theorems for all L functionals. Also, variance bounding (unlike geometric ergodicity) is preserved under the Pesk...

متن کامل

Variance Bounding Markov Chains 1203 Theorem

We introduce a new property of Markov chains, called variance bounding. We prove that, for reversible chains at least, variance bounding is weaker than, but closely related to, geometric ergodicity. Furthermore, variance bounding is equivalent to the existence of usual central limit theorems for all L2 functionals. Also, variance bounding (unlike geometric ergodicity) is preserved under the Pes...

متن کامل

Variance Bounding Markov Chains by Gareth

We introduce a new property of Markov chains, called variance bounding. We prove that, for reversible chains at least, variance bounding is weaker than, but closely related to, geometric ergodicity. Furthermore, variance bounding is equivalent to the existence of usual central limit theorems for all L functionals. Also, variance bounding (unlike geometric ergodicity) is preserved under the Pesk...

متن کامل

Variance Reduction via Antithetic Markov Chains

We present a Monte Carlo integration method, antithetic Markov chain sampling (AMCS), that incorporates local Markov transitions in an underlying importance sampler. Like sequential Monte Carlo sampling, the proposed method uses a sequence of Markov transitions to guide the sampling toward influential regions of the integrand (modes). However, AMCS differs in the type of transitions that may be...

متن کامل

Discrepancy estimates for variance bounding Markov chain quasi-Monte Carlo

Markov chain Monte Carlo (MCMC) simulations are modeled as driven by true random numbers. We consider variance bounding Markov chains driven by a deterministic sequence of numbers. The star-discrepancy provides a measure of efficiency of such Markov chain quasi-Monte Carlo methods. We define a pull-back discrepancy of the driver sequence and state a close relation to the star-discrepancy of the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The Annals of Applied Probability

سال: 2008

ISSN: 1050-5164

DOI: 10.1214/07-aap486